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Project overview

Context | have not failed. I've

In the quest to design better plastics, there is a vast design ju st found 10,000

space. An Edisonian approach is inefficient; computational ,

tools can accelerate discovery. ways that won't
work.

History
Project start in 2018 with an initial focus on performance-
advantaged polymers

Thomas Alva Edison

Project goal Number of Polymers

Predict material properties from molecular structure to 10° — —10' —» PABP

facilitate targeted synthesis and pave the way for reduced ‘ Synthesis Candidates
time-to-market of PABPs (PABP Synthesis)

This project answers this question:
How effectively can computational methods downselect
material candidates from molecular structure?

® Potential Materials

PABP = performance-advantaged bioproduct
NREL | 2



1. Approach — key elements

Technical Approach

» Take advantage of the unique chemical functionality of
novel building blocks from sugars, lignin-derived

aromatic compounds, and more
Diverse Feedstocks and High-Throughput, Machine High-Performance

«  Focus on both polymers and small molecule PABPs Large Design Space Learning-Based Design Materials and
Greater Sustainability

» Feed targeted materials to Synthesis and Analysis of  Waste
PABP project [y

>~

» Collaborate with other BETO projects: Biological
Lignin Valorization, Bioconversion of Thermochemical ~Biomass
Intermediates, BOTTLE Consortium, Catalytic
Upgrading of Pyrolysis Products

*  Apply computational tools to identify industrially P0|y ID
relevant technologies and guide industry engagement
projects

KraftdHeinz ExgonMobil
TEMPUR +SEALY#HSALGIX

PABP = performance-advantaged bioproduct

patagonia

Wilson et al. In revision.
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1. Approach — key elements

Technical Approach @.
Task 1: Machine Learning (ML) POWE

Build and deploy ML models to vastly reduce
design space of potential PABPs via molecular
property prediction

Frequent communication, working meetings, development
of milestones, sharing results, and joint troubleshooting

Task 2: Molecular Simulation (MS)

* Develop structure-function relationships and
design principles via molecular-level insight

* Augment datasets for training ML models

* Predict performance-advantaged properties

Q

PABP = performance-advantaged bioproduct
ML = machine learning
MS = molecular simulation

Management Plan
Mark Nimlos (ML task lead)

Database development, machine learning
for molecular property prediction

Michael Crowley (Former PI)

& Macromolecular Simulation, QM/MM,
3» CHARMM, Amber

2\ Brandon Knott (MS task lead, PI)

Molecular dynamics,
structure-function elucidation

Leverage expertise in multiple modeling
approaches to synergize internally and with
partners.

NREL | 4



1. Approach — risks and milestones

Risks and mitigation strategies Major milestones, Go/No-Go Decisions:

* FY21: Predict new polymeric materials via machine learning

. i . I h h
Risk: low accuracy and throughput (PolylD) and down select to 25 polymers to be

 Mitigation: incorporation of additional experimentally synthesized and characterized,
model features, domain of validity demonstrating a PABP (joint with Synthesis and Analysis of
_ _ y PABP project).
* Risk: low interpretability of ML outputs « FY22 Go/No-Go: Demonstrate a 10% improvement in
- Mitigation: molecular simulations can accuracy by augmenting ML datasets with molecular
provide molecular insight simulation generated data (milestone met, “Go”)

» FY23: Predict solubility of PET in lignin-derived solvents
* Risk: insufficient population of database

for certain substructures « All milestones have been met on time

+ Mitigation: augment with additional data, » Most milestones have resulted in peer-reviewed publications
either from experiment or simulation

NREL | 5



2. Progress and outcomes - outline

Integration of PolylD with

synthesis partners
@ o Synthesized Polyester

POIyE o Synthesized Polyamide

Coupling reaction network
generation with machine learning

Test Set
G 3501 2%
o //
E 200 - o/o/./‘
5 504 . o8
o £
& _1004~

—100 50 200 350
Observed (° C)

Mechanistic insight into recyclable nylons

t*@ e

nucleophilic attack + (RS)
15.9
[

——. tetrahedral intermediate
10.3 3

/ 2 3 SH
y ,/ % \, ring opening,
= ) /) s \, relaxationto | [
- /,’ / T '\ equatorial
o .. 53 \
b J o.
et S e

o

active chain end (‘Rs SR) = “\—— active chain end (n+1)
03

Increasing ML model accuracy
by integrating tacticity

R S
[o) (o]
HOJYOH HO” "~ OH
Meso Racemic

o o o (o)

Estimating toxicity of bio-based plasticizers

DEHP, Binding energy:
-6 kcal/mol

BPA, Binding energy:
-7.6 kcal/mol
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2. Progress and outcomes

PolyID is a machine learning tool for polym Database Curation
Literature, Polymer Databases,

Experimental Measurements

PolylD comprises 3 components: p olly(m ﬁr|N e o) , — o

. poly(ethylene terephalate onomer -
1. Database - I|nk§ monomer structure to L. Monomer Names: Structures: ) < > Vi

polymer properties. 1,791 unique polymers. ethylene glycol.terephalate | e =
S Monomer SMILES: Property
2. Automated, structure generation (in silico C1=CC(=CC=C1C(0)=0)C(=0)0.0CCO —Tg=71°C

pOIymerlzatlon) ¢ In Silico Polymerization

3. Message passing neural network for Python Package (mZp)
polymer property prediction Polymer SMILES: O=C(0O)clccc(ccl)C(=0)OCCO Property
C(=O)c1ccc(cc1)C(=O)OCCOT’. Tig=71°C

-T, (glass transition temperature)

-T, (melt temperature) Maching Learning
-Barrier properties (e.g. how readily O,, CO,, H,0O, Python Package (nfp)

etc. pass through)
-Mechanical properties (moduli) Atom Message Passing Block Prediction of each
State EI s bond's contribution
r \_’ Averaged
Bond TD S = —> prediction
State S I - —¥ for entire
Molecule ﬁ/lessage molecule
State _’D Layers 0
SMILES = simplified molecular input line entry system Wilson et al. In revision.

m2p = monomers to polymers (python package)
nfp = neural fingerprint (python package) NREL | 7



2. Progress and outcomes

ML predictions validated by synthesis of polyesters and polyamides

Quantifiable relationship
between model accuracy and
overlap between training/test
structures

Targeted augmentation of
database to increase prediction
accuracy

10 polyesters and 12
polyamides that were not in the
database were synthesized and
characterized by partner PABP
project (Synthesis and Analysis
of PABPs)

O 80 -

o ()

,_,1360-. °

840 e

& o © . NS
820— ()
=

}\a O-I 1 1 1 1 1 1 LI

=1512 8 4 O

Substructures Outside
Train

I No ¢, c-Muconic Acid, MAE = 44 °C

I One ¢, c-Muconic Acid, MAE = 23 °C

EG

@)
[a)
o
<
—

1,3-PDO
1,6-HDA

Predicted (° C)

o Synthesized Polyester
o Synthesized Polyamide

Test Set

350 | 2%
v
%
200 - .
O/o(/
1 2%
50 f/ s+
-100- 7

—100 50 200 350

Observed (° C)

Wilson et al. In revision.
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2. Progress and outcomes

ML vastly reduces the design space for PABP PET replacements

« PABP analog of PET was | = Eg:ygfrt]?égs O PABP PET replacement
targeted with a T4 above @ H Pol¥car|k:>onates PET replacement without yields
the boiling point of water o * PET replacement with yields
and with equivalent or e MetaCyc 7 500 -
improved O, barrier o  MINEs A
properties @  KEGG - ©

§  BIGG - — 00

5 PABPs predicted from c - O 100 A
KEGG that met the = 102 104 10° 2 +PET:
requirements (green No. of Polymers " ¥
circles), linked to 3 diacids 0 1 .

* 1 polymer synthesized 5-carboxyvanillate
(poly(ethylene 5- HO._O T
carboxyvanillate), PEC), OH 107! 10° 10!
with Tg = 112C o o Permeability O,

OH (barrer)

PET = poly(ethylene terephthalate) _ N
Tg = glass transition temperature Wilson et al. In revision.
KEGG = Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/)
ML = machine learning

NREL | 9


https://www.genome.jp/kegg/

2. Progress and outcomes — coupled network generation

Coupling reaction network generation with ML for polymer property prediction

* Integration of PolylD' and Initial Monomers Step 1: Build
Pickaxe? expands discovery (Kegg + Sigma Polymers
space to chemically accessible digcids / diols)
molecules Approx. 50,000 molecules
" of biological origin ]
* Initial molecules from known 479 diols and 333 diacids NS ICHNAIS S} Step 2: Predict
biological sources Child Monomers Properties

» Proof of concept performed with
optimizing difference of T,, and
T, for diol and diacid polyesters

Step 3: Shortlist
Parent
Monomers

Step 4: Reaction
Generation

" Wilson et al. In revision.

2 https://github.com/tyo-nu/MINE-Database

Tm = melting temperature

Tg = glass transition temperature

KEGG = Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/)


https://www.genome.jp/kegg
https://github.com/tyo-nu/MINE-Database

2. Progress and outcomes — coupled network generation

Pickaxe + PolylD predicts PABPs with excellent T,-T,

Network generation coupled with
property prediction expands the
discovery space

Increasing network expansion from
one generation to two generations
leads to faster property
convergence and higher properties

Increasing similarity amongst
monomers across loops supports
converging properties

Further improvement of properties
can be tuned by further expansion
of reaction networks

Tm = melting temperature
Tg = glass transition temperature

Lopez et al. In preparation.
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2. Progress and outcomes — incorporating tacticity

There is significant potential for improvement of existing ML models by incorporating chirality

Polymers can contain

stereochemical information

on the pendant groups,
known as chirality.

Chirality can have a
significant impact on the
properties of polymers.

Current models do not
incorporate chirality for
prediction, which can
introduce significant error

Pm = probability of a meso linkage
Tm = melting temperature
Ty = glass transition temperature

R s
. o o
Enantiomers HOJYOH HOJ'\_/\OH
Meso Racemic

o o o o)
Connections Ho”\r*o)'\r‘orn HOJYOJ\/\OH

Pm Pm=[m1/([m]+[r])
14 0000000000000 5ot
0000000000000 ~tacic

0V 0000000000000 sydotactic

Polymers

Ty Experimental (°C)

Tm Experimental (°C)

Shebek et al. In preparation.
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2. Progress and outcomes — incorporating tacticity

Incorporating chirality improves model predictions

We incorporate chiral information

into our model in two ways:
1) P (global)
2) Chiral tags (atom-based)

MPNN = Message Passing Neural Net
Pm = probability of a meso linkage

Tm = melting temperature

Ty = glass transition temperature

Tacticity incorporation

P Value Inputs

Pm H

1) 0000 m—————p |

I

oV 000 H-H
Bond Matrix

Chiral Tags /
o o

HOJYOJYOH

(R) (R)

HiE

Connectivity
Matrix

Including tacticity reduces error

25

= = N
o ul o

Mean Absolute Error (°C)
()]

MPNNCchiral

Shebek et al. In preparation.

B MPNNnochiral
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2. Progress and outcomes — incorporating tacticity

Application: PHA replacements for PET Poly(lactic-co-mandelic) Acid

 Many (105) possible ) T, (°C) T, (°C)
polymers from KEGG ’

0 Tacticity Pred Exp Pred Exp
» Accurately predicted OH .
performance for a PHA Q‘OH HO Syndio 71 NIA 195 N/A
copolymer (top) HO 5 Atac 52 54 96 N/A
* Predicted an as-yet- Iso 71 76 164 N/A
uncharacterized novel
PHA polymer with high ] Poly(2-methoxymandelic) acid
performance (bottom) o on T,(°C) T, (°C)
7
O Tacticity Pred Exp Pred Exp
HO Syndio 65 N/A 199 N/A
Iso 75 N/A 197 N/A
Experimental data:
PHA = poly(hydroxyalkanoate) Lukito, B. R., et al. (2021). Bioresources and Bioprocessing, 8(1)
Tm = melting temperature Pedna, A., et al. (2015). Journal of Applied Polymer Science, 132(30)

Tg = glass transition temperature
KEGG = Kyoto Encyclopedia of Genes and
Genomes (https://www.genome.jp/kegg/) Shebek et al. In preparation. NREL | 14
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2. Progress and outcomes — mechanistic understanding of redesigned nylons

Atomistic modeling rationalizes mechanisms of polymerization and chemical recyclability

* Anovel, hybrid nylon (nylon 4/6)
was introduced by partner projects

+ optical clarity

* high Ty

* melt processability

+ full chemical recyclability

»  We employed density functional
theory (DFT) to model the w %
propagation step in order to
investigate which stereoselectivity is ‘*Q é
more kinetically favorable S RS)

active chain end (RS SR)

BOTTLE, PABP) that exhibits: c
(BOTTLE, PASP = AT

nucleoph:l:c attack + (RS)
15.9
’ '
/l B Ss

10.3

DFT = density functional theory
Tq = glass transition temperature

== tetrahedral intermediate

+H*

\
\
8 ring opening, ‘
relaxallon to \ [
equatonal
b
\
SS \\
~ 3
S \
~ \

a‘x .;3)

“\l==  active chain end (n+1)
0 3

Cywar et al. JACS 2022 NREL | 15



2. Progress and outcomes — mechanistic understanding of redesigned nylons

Atomistic modeling rationalizes mechanisms of polymerization and chemical recyclability

* Anovel, hybrid nylon (nylon 4/6) erythro-disyndiotactic threo-disyndiotactic
was introduced by partner projects WY

(BOTTLE, PABP) that exhibits:

+ optical clarity .
o high Tg Equatorial
* melt processability
+ full chemical recyclability
« DFT suggests molecular level
conformational changes and
hydrogen bonding promote nylon
4/6 thermal decomposition
(recycling) before melting

+ 0.1 kcal/mol

Axial

+ 3.7 kcal/mol + 4.6 kcal/mol

DFT = density functional theory
Tq = glass transition temperature

Cywar et al. JACS 2022 NREL | 16



3. Impact — Publications and code distributions

Publications

Forthcoming PolyID paper (in review)
central | F =187

science

Green Chemistry I.LF. =11.0

Toxicity of lignin-derived plasticizers

JACSIF=164
DFT of fully recyclable nylon

Cell Reports Physical Science JRzS=N#&:!

Structure-function of B ketoadipate-based nylon

I.F. = impact factor

PolyID available as an online tool!
https://polyid.nrel.gov

Code distributions

Monomers to Polymers (m2p)

A simple interface for converting monomers to
polymers using SMILES representation.
https://pypi.org/project/m2p

Neural Fingerprint (nfp)

Python-based end-to-end learning on molecular
structure.

https://pypi.org/project/nfp

PolylD (polyid)

Framework for building, training, and predicting
polymer properties using graph neural networks.
https://pypi.org/project/polyid

NREL | 17
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3. Impact —Partnerships

Tools developed in this project are being applied to specific polymer classes targeting specific
properties collaboratively with companies and DOE partners

KraftJHeinz

» Goal: Identify polymer candidates with superior
barrier performance compared to non-recyclable
multi-layer films

» Other partners: BOTTLE Consortium
Algix, Patagonia, Tempur Sealy

» Goal: develop bio-based non-isocyanate
polyurethanes for industrial applications.

* PolylD tool used to map chemical properties of
polyurethane precursors

» Several formulas with promising performance were
successfully prepared

» Other partners: TCF project “Commercialization of
_biobased non-isocyanate polyurethane”

HeaLc TEMPUR+SEALY

Ex¢onMobil

» Goal: discover polymers that can be produced from

anhydrous sugars generated via biomass
deconstruction.

 PolyID work initiated in FY22Q2 and completed in

FY22Q3

» Current status: synthesis based on PolylD

predictions initiated in FY23Q2

L bottle (BETO/AMO)

changing the way we recycle™

» Goal: Redesign of waste plastics into recycle-by-

design materials leveraging Inverse Design tools

* In collaboration with the University of Wisconsin,

PolylD is being used to develop bioderived
polyesters.

NREL | 18



Summary

Diverse Feedstocks and High-Throughput, Machine High-Performance
Large Design Space Learning-Based Design Materials and
Greater Sustainability

Waste

>

Biomass

&oly[ﬁ]

Wilson et al. In revision.

Number of Polymers
106 — -10' —» PABP

L Synthesis Candidates
(PABP Synthesis)

Potential Materials

ML = machine learning
MS = molecular simulation
PABP = performance-advantaged bioproduct

Overview

» Predict material properties from molecular structure to
reduce PABP design space, facilitating targeted synthesis

Approach

* Machine learning and molecular simulation to predict novel
PABPs and develop structure-function relationships

Progress and outcomes
* PolylD: machine learning tool for polymer property prediction

* Mechanistic insight, rationalization of physical properties,
and in silico predictions of performance advantages

Impact

* Targeted synthesis of PABPs

* High impact publications

* Public code distribution

* Industrial collaborations leveraging PolylD

NREL | 19



Quad chart overview

Timeline
* Active Project Duration: 10/1/2020 — 9/30/2023
+ Total Project Duration: 10/1/2017 — 9/30/2023

FY22 funding Total Award

$400,000 $400,000 — FY23
(10/01/2021—- $1,200,000 — Active
9/30/2022) Project (FY21-23)

Project Partners

BETO Projects: Synthesis and Analysis of Performance-
Advantaged Bioproducts, Biological Lignin Valorization,
Bioconversion of Thermochemical Intermediates, BOTTLE

Consortium, Catalytic Upgradin?\lof Pyrolysis Products,
Commercialization of Biobased Non-Isocyanate Polyurethane

(TCF)

University Partners: Northwestern University, Colorado State
University, University of Wisconsin-Madison

Project Goal

Accurate computational prediction and
structure-function relationships of performance-
advantaged bioproducts

End of Project Milestone

Establish and apply a computational method for
assessing the suitability of new bio-based
solvents for polymer séynthesis and processing:
Predict solubility of PET in = 25 novel lignin-
derived performance-advantaged solvents and
benchmark against experimental values.

Funding Mechanism

Bioenelrzg{ Technologies Office FY21 AOP Lab
Call (DE-LC-000L079) — 2020

TRL at Project Start: 2
TRL at Project End: 4

NREL | 20
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2. Progress and outcomes — /n s//ico toxicity prediction

Bio-derived plasticizers predicted to exhibit reduced toxicity N T P e
. . . oxin Toxicity actor Toxicity
» PABP project partners biologically o | makg | T (gl
0 | l !
F:onverted CFP wastewater moIepuIes e (B e | v | wem | Diacids and Oxcalcohos
into performance-advantaged, bio- ¢ | Diccids 1 Muconates M) 1 AdpatesMA) | -~y o) o | o N
based plasticizers for PVC g oo ' : | ]
[} ! I ! OH PA yes 5,130 0.5 29.5
[ 1 1 1
+ We utilized the EPA Toxicity | 1.0
Estimation Software Tool (TEST)"and £ , [l : : rol | A | e | er ]
Chemical Transformation Simulator & | R e no [Masme | ea
(CTS)2 to predict several health and O"BVC Phthalate AA  2MM  3MM Blend 2MA  3MA  Blend HOJ?\/WOH MA o |[IPAGED o =5
en\.nron.mentall tQX|c[ty m.etrlcs and Primary citation: I AP o | ewo | ox | wn
rationalize toxicity via primary Henson et al. Green Chemistry 2022 er
metabolic pathways ™ e | s | es ) e
. Similar contribution in the context of plasticizers ”"MOH M oo s | o3 e
» Compared to two industry standard derived from oxidative depolymerization of ——
1O hardwood lignins: o
plasticizers (DEHP and DEHA), Su et al. ACS Central Science 2023 OCL |ome | v [ s | o
diacid-based plasticizers were L
i ihi CFP = catalytic fast pyrolysis Ro x| DEHA no | 9750 537
predicted to exhibit reduced health PVC = oaiilring] ohiidon N
and environmental risks EPA = Environmental Protection Agency 0 °
" Martin, T. M. T. E. S. T. (Toxicity Estimation R‘°J\A(\°rf°"* DEHsMA | no | g8g0 632
Software Tool) Version 5.1, 5.1; U.S. EPA: 2020. =l oy | pem U N
2 Chemical Transformation Simulator(CTS), M\"’ro
Version 10 2019 *oo I R DEH2MM yes 13,500 9.12
R\ok?\(\g/o\n DEH3MM yes 13,500 9.12 23




Responses to previous reviewers' 2021 comments

o Reviewer comment: “More involvement with industry would be a good addition, although it is encouraging to see an
exploration of “Commercialization of Fully Renewable Non-Isocyanate Polyurethanes” with industry such as Sealy,
Patagonia, Agilix.”

o Reviewer comment: “Key will be to connect to an even greater base of materials experts in industry to tap their insights
into structure/property relationships and performance.”

o Response: Industrial engagement / partnership has always been a goal of this project, and as the first reviewer
noted, we had some engagement that was reported on in the 2021 Peer Review. Since the last Peer Review, we
have since built significantly on those efforts, as noted in the Impact section of our 2023 review. The
computational tools developed in the Inverse Design project are applied selectively within this project. This
development work is also leveraged significantly in other projects with industrial partners, where they are applied
to specific polymer classes, targeting specific properties, and for specific applications.

NREL | 24



Responses to previous reviewers' 2021 comments

o Reviewer comments: Not clear why ML ("black box") is superior to simply using molecular / mechanistic simulation
tools. ML could be faster, certainly, but such models are often unreliable upon extrapolation of the training date set.

o Response: The team does not assert that machine learning (“black box”) or molecular simulation is superior
because both approaches have their strengths and weaknesses, and leveraging both approaches can provide the
greatest outcomes. We are employing machine learning to pare down the immense design space to pass the
most promising candidates to our experimental partners. The atomistic simulations are a finer-resolution tool to
further pick out promising candidates as well as drive the development of structure-function relationships.

NREL | 25



Responses to previous reviewers' 2021 comments

o Reviewer comments: Results are indicative of good progress and outcomes. There is emphasis on believing that this is

going to work supported by rigorous statistical input. It is important to bear in mind that a null hypothesis might be that
the predictions have potential to deliver a zero outcome.

o Response: The team acknowledges the possibility of the null hypothesis. This would be an unfortunate outcome of

the research, and the tools developed within this project will help experimental efforts in identifying both promising
candidates as well as candidates that are unlikely to be performance advantaged.

NREL | 26



Responses to previous reviewers' 2021 comments

o Reviewer comments: It is interesting that the team chose to pursue an alternative to PET rather than targeting ways to
make PET more sustainable. This team would also have the means to improve PET, producing greener versions of
monomers for PET production. They might consider the (often) prohibitively high cost of introducing new polymers vs
improving an existing one.

o Response: We appreciate the costs and challenges in bringing new materials to the market, and we acknowledge
that both more sustainable routes to existing materials (e.g., PET) as well as sustainable replacements will likely
be needed to realize a fully circular economy.

NREL | 27



Publications, patents, and presentations

Publications

In preparation

Caroline B. Hoyt, Nicholas A. Rorrer, A. Nolan Wilson, Avantika Singh, Scott Nicholson, Robert A. Allen, Gregg T.
Beckham. “Bio-based aromatic amines for catalytic naphthoxazine synthesis and effects on ring opening.” In preparation

(Target Journal: Green Chemistry).

Lauren Lopez, Linda J. Broadbelt, Nolan A. Wilson. “Combining reaction network generation with machine learning for
expanded discovery of renewably sourced polymers with performance advantages.” In preparation.

Kevin M. Shebek, Linda J. Broadbelt, Nolan A. Wilson. “Accurate property prediction for chiral polymers via multiple
strategies for incorporating tacticity into machine learning predictions.” In preparation.

Under review
A. Nolan Wilson, Peter C. St. John, Daniela H. Marin, Caroline B. Hoyt, Erik G. Rognerud, Mark R. Nimlos, Robin M.

Cywar, Nicholas A. Rorrer, Kevin M. Shebek, Linda J. Broadbelt, Gregg T. Beckham, Michael F. Crowley. “PolyID: Artificial
intelligence for discovering performance-advantaged and sustainable polymers.” Under review.

NREL | 28



Publications, patents, and presentations

2023

Zhi-Ming Su, Jack Twilton, Caroline B. Hoyt, Fei Wang, Lisa Stanley, Heather B. Mayes, Kai Kang, Daniel J. Weix, Gregg
T. Beckham, Shannon S. Stahl. “Ni- and Ni/Pd-catalyzed reductive coupling of lignin-derived aromatics to access
biobased plasticizers.” ACS Central Science. 2023.

2022

Nicholas A. Rorrer, Sandra F. Notonier, Brandon C. Knott, Brenna A. Black, Avantika Singh, Scott R. Nicholson,
Christopher P. Kinchin, Graham P. Schmidt, Alberta C. Carpenter, Kelsey J. Ramirez, Christopher W. Johnson, Davinia
Salvachua, Michael F. Crowley, Gregg T. Beckham. "Production of (3-ketoadipic acid from glucose in Pseudomonas putida
KT2440 for use in performance-advantaged nylons." Cell Reports Physical Science. 2022.

William R. Henson, Nicholas A. Rorrer, Alex W. Meyers, Caroline B. Hoyt, Heather B. Mayes, Todd Vander Wall, Rui
Katahira, Jared J. Anderson, Brenna A. Black, William E. Michener, Lahiru Jayakody, Davinia Salvachua, Christopher W.
Johnson, Gregg T. Beckham, "Bioconversion of wastewater-derived methyl phenols to methyl muconic acids for use in
performance-advantaged bioproducts." Green Chemistry. 2022.

Robin M. Cywar, Nicholas A. Rorrer, Heather B. Mayes, Anjani K. Maurya, Christopher J. Tassone, Gregg T. Beckham,
Eugene Y.-X. Chen. “Redesigned hydrid nylons with optical clarity and chemical recyclability.” Journal of the American
Chemical Society. 2022.
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Publications, patents, and presentations

Code distributions

Monomers to Polymers (m2p)

A simple interface for converting monomers to polymers using SMILES representation.
https://pypi.org/project/m2p/

Neural Fingerprint (nfp)
Python-based end-to-end learning on molecular structure.
https://pypi.org/project/nfp/

PolyID (polyid)

Framework for building, training, and predicting polymer properties using graph neural networks.
https://pypi.org/project/polyid
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Publications, patents, and presentations

Presentations

“Machine learning for prediction of sustainable polymers.” American Chemical Society, Fall 2022 Meeting. Nolan Wilson
(presenter), Peter St. John, Mark Nimlos, Mike Crowley.

“Bio-derived, Sustainable Polymers Through End-to-End Learning.” Gordon Research Conference — Computational

Materials Science and Engineering. 2022. Nolan Wilson (presenter), Peter St. John, Daniella Marin, Caroline B. Hoyt,
Mark Nimlos, Nic Rorrer, Gregg T. Beckham, Mike Crowley.
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Publications, patents, and presentations

Provisional Patent Number Title

63/158,715 Machine Learning for Biopolymers and High-Performance Aromatic Bio-based Polyesters.
ROI Number Title
Copolymerized anhydrosugar-based methacrylates with olefins
ROI-22-43 High barrier and compostable films
Software ROl Number Title
SWR-19-40 “M2P” Monomers to Polymers
SWR-19-13 “‘NFP” Neural Fingerprints
SWR-21-98 PolyID*

*PolyID™ has been retained as a trademark for the machine learning tool
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